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ABSTRACT

The nonlinear equations of motion for an incompressible simp le f l uid,

occupying a fixed bounded container, are formulated on the basis of the

“finite-linear” viscoelastic theory for materials with fading memory ; this

formal boundary-initial value problem is then viewed as a nonlinear abstract

evolution equation on a certain Hu bert space. It is shown that a linearized

version of this evolution equation is associated with a linear dynamical

system on this Hu bert space, and several stability and asymptotic behavior

results for this linearized problem are proved through the use of Liapunov

stability methods. On the assumption that the original nonlinear evolution

equation also is associated with some dynamical system on the same space , it

is shown that the rest condition of the fluid is stable and all motions are

bounded. The Liapunov function emp loyed for this purpose can be interpre ted

as a mechanical energy function for the fluid.

Key words:

simp le f luid , viscoe las tic, fading memory, stabil ity, Liapurzov function,

dynamical system.
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1. Introduction

In this paper we study a boundary-initial value problem describing the

motions of an incompress ible simp le f luid with fad ing memory,  assuming a

“finite-linear” constitutive equation as formulated by Coleman and Noll (1961) ,

(1964). Stability results for linearized versions of this problem have been

obtained by Craik (1968) and Joseph (1974), who emp loyed spec tral analysis

fo~ this purpose; more recently, Slemrod (1976), (1978) has performed a

stability analysis for one such linearized problem by using the ideas of

dynamical systems theory. We refer the reader to Slemrod (1976) for a critique

of the spec tral analysis approach.

Here we are prim4xily ~nterested in the highly nonlinear equations of

motion which result from a caref ul formulation of the general problem descr ibed

above , emp loying onl y physically reasonable assumptions. Our most important

assumption is that these nonlinear equations do lead to a dynamical system

on an appropr iate state space, and we motivate this assumption by also studying

a linearized version of the problem. Al though our linearized problem is

closely rela ted to the linear problem considered by Slemrod (1976), (1978),we

are able to show that certain of the stability results for our linearized problem

do carry over to the original nonlinear problem, whereas those of Slemrod (1976) ,

(1978) , Craik (1968) , and Joseph (1974) apparently do not. Our approach

here is based entirely on the ideas of dynamical systems theory.

In ~2 we formulate the basic equations of motion for a simple incompressible

flu id, based on the “finite-linear” viscoelastic constitutive equation of

Coleman and Noll (1961). Assuming that for all time t � 0 (but not t < 0) the

f luid is incompress ible and f ills a fixe d bounded container , we obtain a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~EEII~
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formal boundary-initial value problem with history dependence of possibly

infinite duration. Choosing a state space equipped with a “fading memory”

norm (see Coleman and Mizel (1966)), we view the formal problem as an abs trac t

evolution equation on this space ; tractability of this problem seems to be highly

dependent on selection of the appropriate state space.

As we are unable to prove that our nonlinear evolution equation leads

to a dynamical sys tem, we consider a linearized version in §3. There we show

that this linear evolution equation does lead to a dynamical system (on the

same space), and we obtain certain results on stability, asymptotic stability,

and exponential decay of motions . Although our linear problem is closely

related to those of Craik (1968), Joseph (1974) , and Slemrod (1976), (1978),

we make fewer assumptions regarding the deformation history. Finally, itt §4

we assume tha t, in a cer tain sense, the or iginal nonl inear problem is rela ted

to a dynamical system; we -then are able to prove that the rest condition is

stable and every motion is bounded in terms of the initial state of the fluid.

Our results are obtained through the use of a Liapunov function (see Hale (1969))

which we interpret as a mechanical energy function for the fluid. 

-—— — - — -- ~-i~-”.~~~;r- ~~c,-
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2. Formulation of the Problem

We conside r an incompressible simp le f luid occupying a bounded domain

c2Ea3, with C
1
-smooth boundary I’, for all time ER+ £O,~ ). Following the

development of Noll (1958) and Coleman and Noll (1961), (1964), we formulate

in this sec tion a set of nonlinear equa tions of motion based on the “finite-

linear” viscoelastic theory. -

For this purpose , consider an arbitrary fluid particlc~ that has position

= 

~~~~~~~~~ 
Ec1 at time tER+, letting X(T;11,t) = (X ~,X2, x~

) ER 3 and

p(’r;ll,t) ER+ denote its position and mass density, respective ly, at t ime r E R

(note that t ~ 0 but T may be negative). The relative deformation gradient

F(r; T~,t) is the second order tensor whose components are given by

f
1~ (T;~Lt) ~~x~(T;1ht). where ~~~~~~

— . It is known that

(2.1) p (t;T~,t) p(r ;~fl,t) det F(T;11,t)

for all (r ,T~,t) ER X ~ X R~.

Following Coleman and Noll (1961), we denote by C(T;T~,c) the relative

right Cauchy-Green tensor with components C
jj ~~~~~~ 

Here and in

the seque l we employ the convention of summation on repeated indices. Under

the assumption of isotropy and homogeneity (see Coleman and Noll (1961), (1964)),

the bas ic cons titutive equations of the “finite-linear” theory of viscoelasticity

state that, for a compressible simp le f luid, the components of the stress

tensor S(T~,t) are given by

s~~ (ll~t) - { ( p ( t; 1~,t ) )  + S~~
(5 ,p ( t ;

~
, t ) ) L c

kk
( t - 5 ;~ , t) 6kk~dS} 

oi j

- $0
;s , t;1~ t))[c~~ (t - s; 1~,t) - 6~~ )ds , (1~,t)  E~� X R~

___
7~;.

_ _ 
—
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- -

~~~~~~~~~
-
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where 6~~ deno tes the Kronecker del ta and ~~ , h , are scatar-valued material

functions (see equation 5.18 in Coleman and Noll (1961)). Here we assume

the fluid to be incompressible for ¶ E R +; hence , the density is constant and

we set p (T;T~,t) E ~ for TER+, 11E C2 , tER+, without loss of generality. Under

this assumption the above expression for stress must be rep laced by

(2.2) s~~(~~t) = - p(~ ,t)ô.~ -~~ m(s~~c.~ (t - s;~~,t) - ô .jds , (~~,t) E~ X

where p(11,t) is a constitutively indeterminate quantity and in : R+ -, It is a

material function. We assume that this function satisfies the following

conditions:

a) inEC
1(R~ ) fl~~1(R~) , -

(2.3) b) m is nonnegative and nonincreasing on

c) rn(s) > 0 for sEEO ,r); rn(s) = 0 for sg[O ,r) ,

where r > 0 may be infinite. This mild assumption follows from the concept

of “fading memory” as stated by Coleman and Noll (1961).

We remark that the validity of equation (2.2) depends on the assumption

of incompressibility for IER+, but does not presume incompressibility for

‘r < 0. Furthermore, we note that, by equation (2.1), the assumption

p(T;TI,t) = 1 for ¶ER+ implies that

det F(T;11,t) = l/ p(T; 11,t) , TER ,

(2.4)

det F(r;1~,
-t) = 1 , ~TER

+

for all (T~,t) Ec2 x R~. 

IL1.I±1~~ ~~ I’~
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We assume the f luid container to be fixe d in some iner tial system, and that

all particle positions are measured relative to this inertial system. We also -

assume the body force (per unit mass) at (fl,t) to be the gradient a~q(l1,t) of

a known externa l potential q : Cl X R~ ~
. ft . Consequently, the balance law

for linear momentum takes the form -

(2. 5) —i X~(r; T1,t) — a~q( 1~,t) + a $ (11,-t) , (11, -t) EO X ft~ai~ ~—t

It is convenient to introduce some new notation; let

v(TI,t) X(i;T~,t)

(2.6)
u(s ,T1,t) ~~ X(t-s; 1~,t) — X(t;11,t) X(t-s;II,t) -

for all (s ,Tt,t) ER+ X Clx ft+ For a particle with position ~ € Cl at time tE ft+,

v(T~,t) represents its velocity at time t and u(s,11,t) + 1~ its position at

t ime t - s ~ t. Some straightforward manipula tions show that

(2.7) 
- 

~~~~~ 
Xj(~ ;~~,t)~ = ~~~~~~~~~~~~~~~ + v .(~ ,t)

(2.8) ~~~~ u1
(s ,1~,t) = - vj (1

~,
t) [a

ij + ~~~~~~~~~~~~~ 
- 

~~
— u~(s,1Lt)

(2.9) u .(O,Tl,t) = 0 , u.(s,T1,t) = - v .( T~,t)1 S 1 s=0

(2.10) c
i~

(t_s;
~~

t)_ 6
iJ 

= 
~~~~~~~~~~~~~~~~~~~~~~~~ 

- 6
ij

= a.uk
(s
~
TI)t) a

J
u
k

(s
~
’rL t) + a.u~ (s~TLt) + a.u.(s,Tht)

for all (s,TI,t) ~ ft+ X ~ X ft+ Since the first of (2.9) implies a~u~ (o,1Lt) = 0,

relation (2.4) leads to the condition

•‘~~~~- ~~~~~~~~~~ ~~~ 

_ _ _~i.
_ _
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det1a~u~ (s TLt) + o~~l = det~a~u~ (O 1 r1~t) ÷

= det~b . j  = 1
13

for all t ~ s � 0, flECl; hence, we also have

(2.11) - 0 = 

~~~ 
det

~~j
u
i

(s
~~~

t) + 6~ j = ~~ ~~~~~~~~~~~~ 
~s=0

= a
1
v .çr~,t) , (T~,t) ECl X

where we have used the second of (2.9).

Upon collecting (2.2), (2.3), (2.5)-(2.ll), and making a f inal phys ical

assumption that the velocity of the fluid is zero at the boundary F, the

f luid motion is seen to be described by the formal evolution equations

(2.12) ~~ v~ C~h t) = — V .(T~t)a~V .(111 t) - a~p( fl , t) + b .q( T~,t)

- aj J
r

zn ( s ) E ajuk (s ,11, t) .a
~
u
k

(s ,
~~
,t) +

+ ~~~~~~~~~~~~~ , T~E C l

(2.13) u .(s ,~~,t) = - v~(~~t)[6 .. +

- ~~
—. u

1
(s ,T1,t) , (s , 1I) ER~ ‘~ Cl

- 
‘ subject to

a~v~ (T1,t) = 0 ,

(2.14) u~ (0~l~,t) 0 v~(11~t) + 
~~ 

u~ (s~ .r\
~t)j

v~ (Tt~-t) — 0 , flE I’

for all tE~7, with prescribed initial data (vi
Crl,O) , uj(s ,fl,O)) satisfying (2.14). 

—
~~~~~~~~~~~~~ 

- . - -  
~~~~~~~~ ~~~~~~~~ 
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The unknown pressure gradient in (2.12) creates certain difficulties , and

we now employ a well known device for removing this term (see Fujita and Kato

(1964)). Consider the Hu bert space (C 2 (cI) ) 3 , equipped with the usual inner

product, and let Ii: (.C2(Cl))
3 

(~2(Cl))
3 be the orthogonal projection whose

range f t (f l )  is the closure in (4 2 (cl) ) 3 of ( E ~~~~(Cl) ) 3 t a~
’
~~ (T~) = 0 , T 1ECl ) .

The range of II is orthogonal to the closure of the set of elements of (C2(Q))

which are gradients of scalar-valued functions. Writing 11 as a symmetric

second order tensor and applying it to (2.12), we find that

(2.15) ~~~~ v~ C11~t) = - TT j Lvj (TL t ) ajvL Ctl) t)

- T1~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , 1~ECl

Once a solution (v,u) of equations (2.13)-(2.l5) is found , the corresponding

pressure gradient ~~p Cfl,t) can be recovered through equation (2.12), or

through the equation obtained by applying the projection I- fl to (2.12).

We wish to emphasize two points about our physical assumptions.

It should be noted that conditions (2.14) do not require the fluid to

have always occupied the domain Cl in the past; i.e., for s > t � 0, we

have not assumed that

u(s ,TL, t) + 11€Cl , 11EO

(2.16)
u(s,II,t) 0 , T I E F . -

Secondly, c6nditions (2.14) do not require the fluid to have always been

incompressible in the past; i.e., for s > t � 0, we have not assumed that

-a.--- ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ---- - -j -  -- -.- - - -
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(2.17) ~~~~~~~~~~~~~ + 1 ,

It is apparent that at least the first of these non-assumptions is physically

important.

We now wish to put (2.l3)-(2.15) in the form of art abstract evolution

equation on an appropriate state space . For this purpose , f irs t consider

the linear space S of pairs (v,u) in (C (Cl))3 x U (P~)
3 
, where

0<~~~< r

(wEC ~ ([O ,r) X Q)tw (s,T1) 0 for (s,’fl) E~ $,r) X

such that vER (fl) and u(0,~l) = 0 = v (T~) + ~~ u(s ,Ti)~ for all 1~E C ~. Recall ing

conditions (2.3) on rn(s), where r > 0 might be infinite , we define

Ikv ,u)II~ E flv.(fl)v .(~) + S rn(s)a
k
u .(s ,

~
).a

k
u .(s ,

~~ ds} 
d~

and we let I denote the Hu bert space obtained by I l . f t ~-- completion of S.

Also , for x = (v,u) ES we define

Nx E (w,z)

(2.18) wi (Tt) - ¶
~jz

v
j

(T
~
)a
j
v
~
cfl) 

-

- n .~ a . S (s)Lah
u
k(s,

1D.a
J
u
k

(s
~
11) + a .uL

(s ,1DJd5

z1(s,TD 
- v~(ll) [o~~ + a .u.(s,1D1 - u.(s,T~ , 

-

and we considerame~tric on S defined by d
N

(x ,
~
) ix 

~~~I
+ LlNx -N~~1, x,,’~ES.

We denote by £(N) the d
N 
- comp letion of 5, and we let N: (~ (N) ~~I) -. I be the

operator defined on £~(N) by (2.18). Clearly, ~(N) is dense in I, and the

completeness of (
~
(N),dN) implies that N is closed as a (nonlinear) mapping

from I to I.

_ _  -
_

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~-~~~~ - —
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Within this setting we can replace (2.13)-(2.15) by an abstract evolution

equation on I, given by -

• k ( t ’ = Nx(t ) a .e .  t ER~
(2.19)

x(0) = x E I

This highly nonlinear evolution equation is very difficult to analyze , even

as to existence and uniqueness of solutions. However, for x = 0, we notice

that equation (2.19) does admit as a solution the rest condition , x( t) = 0

for all tER+. In the following section we study a linearized version of this

equation and show tha t it leads to a stable linear dynamical system on I.

- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -
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3. A Linearized Problem

We are unable to prove that the nonlinear abstract evolution equation

(2.19) is related to any dynamical system (see H~ le (1969) ) ;  in §4 we will simp ly I

assume that such a relationship does exist. To suggest the plausibility of

this forthcoming assumption, we now perform an appropriate linearization

of (2.19) (on the sante Hilbert space I) and show that the resulting abstract

evolution equation does lead to a (linear) dynamical system on I. We remark

that this Hu bert space is different from the one used by Sleinrod (1976), (1978)

for a similar but not identical linear problem.

Our first step is to return to the formal equations (2.13)-(2.15) ~nd

delete all nonlinear terms; hence , conditions (2.14) are retained , w1~ile

(2.15) and (2.13) are rep laced by

(3.1) V u ( ~~l~j~~~t) = - ni~~~ S
m(5

f~L
(5,Tl,t)

~
s , 1~ E C l

(3.2) u.(s~~ ,t) = - v.(~ ,t) - u.(s,l~,t) , (s,l~) x ç
~

for all tE ft+. We continue to assume that rn(s) satisfies conditions (2.3).

Recalling the linear space S and the Hu bert space I defined in Section II,

we def ine , for x = (v ,u) ES,

Ax (w,z)

- 

- - 

(3.3) w~ (T~) - 
~~~~ $

r
mCs a

j
u~~s,T I cis

z .(s ,T1) - v~~(1~) — f u~ (s ,T~) ,

_ _ _ _ _ _ _ _ _ _ _ _ _
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and we conside r a norm on S defined by 
~
XIIA 

a j1x11 1 + iAxII1, x- E S. We denote

by £(A) the 
~HIA comp le tion of 3, and we let A: (~ (A)CI) — I be the linear

operator defined on £(A) by (3.3). We see that £(A) is dense in I and A is

closed as a linear mapping from I to I.

The formal linear problem (3.1), (3.2), (2.14) leads us to consider

a linear abstract evolution equation defined in the }lilbert space I by

*(t)  = Ax( t) , tE ft~
(3.4)

x(0) = x
0

We wish to show that (3.4) is related to a linear dynamical system on I, and

that the motions of this dynamical system are (unique) solutions of (3.4)

for x E - ~(A). 
-

We recall (see Hale (1969), Yosida (1978)) that a dynamical system

on a metric space I, is a family of continuous operators

T(t) I I such that T(.)x : ft+ — I is continuous , T(0)x  = x , and

T ( t + h ) x  = T ( t ) T ( h ) x , for all t ,h E ~~~, x E I . The mapping T ( ’ ) x : R 4 - l and

the set Y (x) a U T(t)x are called, respectively, the motion and the positive
t~~0

- orbit corresponding to the initial state xEI. A subset q’~ I is said to be

positive invariant under [T(tYJ �0 if 
‘y’(x)C~~ for every xECè. A motion T(.)x

is said to be stable if , given any e > 0 , there exists a neighborhood rt6 (x)

of rad ius 6 > 0 such that y Efl6(x) implies T( t)y ErL
c(T(t)x) for all tEft

+
;

T ( . ) x  is asymptotically stable if it is stable and T(t)y -. T(t)x as t —

for all y in some neighborhood of x. Furthermore, we recall that

is called a linear dynamical system if I is a Banach space and T(t) : I -. I is

a linear operator for every t ER~ ; the infinitesimal generator B (~ (B) CI) -. I

of such a linear dynamical system is def ined by



~
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Bx lim ~ CT(t)x-xJ

where ~(B) is the set of xEI such that this limit exists. If B is the

inf initesimal genera tor of the linear dynamical system [T(t))t�0 defined

on I, then for every x0
E~~(B) the motion T(~ )x

0 
is the unique strong solution

of the equation k(t) = Bx(t), ~ 
� 0, for the initial state x( 0) — x0 .

Wi th this terminology, we can prove the following result for our linear

abstract evolution equation (3.4).

Theorem 3.1: For m(s) satisfying (2.3), -the linear operator A: (~ (A)CI) — I

is the infinitesimal generator of a linear dynamical system 1T(t))
~~�0 ~~ 

I,

with 1IT(t)x111 
� 11x 11 1 for all tEft~ , xEI.

Proof: As £(A) is dense in I, for the theorem to be proven it is suf f icient

(see Yosida (1978)) to show that -A is li .111
- accretive and that the range

ft(i -A) = I. Using the natural inner product for I, and consider ing arbi trary

x = (u ,v) E~~(A) , we see that

(x ,Ax) = - SCl
vl ) .n

~2,a~ 
S m s ) a ju.1.(s ,T

~~
sdCl

- j~~~
m(s)a

k
uj(s ,

~
) 

k~~i~~~ 
+ ~~ u .(s ,~~~ ds dCl

= - Iv~(~).a f uL(s ,fl)ds dCl

- 

- j a kvj (D . S m(s)a,
~
u j (s ,i1)as dCl

- 5 5 rn(s)  
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

dCl

~~0

hence , -A is accretive.

~~~~~ 
_ _ _ _  

- ,

~~~~ 

- 

_ _
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As -A is accretive, it follows that I -A posses ses a bounded inverse

defined on ft(I -A). As A is a closed operator, it follows that (I -A) 1 
is

closed and bounded; hence, ft(I - A) — I if ft(I - A) is dense in I. With this

in mind, let (w,z) be a fixed but arbitrary element of the dense set SCI,

and consider the equations

v.(~~ + ~~~~ ~ m(s).a~u~(s1~~ds — w~(~~ ,

(3.5)

u .(s ,T~) + v~ (T1) + ~~
— u~ (s ,I() = z.(s,1~) .

If these equations can be shown to have a solution (v,u) be longing to 
~ (A)

we will, have shown that R(i - A) ~~S, and by the denseness of S in I it will

follow that R(I- A) = I. Formally, the second of equations (3.5) implies that

(3.6) u~ (s~Tt) - (l— e
5)v .(T~) + e

5 
$

S
e~z

i
(~ ,Tt)d~

- 

1 0

hence , u . (O ,11) = 0 and }- u.(s,’P,) — - v.~~fl) for all 11ECl. Defining
s=0

a~~ 5
t
~m(s)(l_e~5)ds ,

(3.7) 
,,

a w
i
(T
~ 

- 

~~~~~~~~~~~~ 
$ m s e 8a~ ~~~~~~~~~~~~~~ , 

-

we note that ~ EIt (fl) fl (C (Cl))
3
, and (2.3) implies that 0 < c~ < ~~~. Us ing

(3.6) and (3 .7) , the first of equations (3.5) becomes

(3.8) v~ Cfl) - — 
~~(P~

)

— ---- - - - -  _ _________j_— . - - - S - r - - i’~~~~~~~~~~ _~~~~~~
__

, .‘  - —-s - - -- 

-- - - - - -  -
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It follows from elliptic theory (see Mizohata (1973)) that (3.8) admits a

solution vEft (fl)fl~~~(~))
3 
such that v~Cr~) 0 for ‘fler ; insert ing this v

in (3.6) we see that uE~~ (~O,r) X C l)) . If r < ~~, we now can conclude that

(v,u) E~~(A). If r — ~~~, let 0 <~~ < and note that, by (3.5) and through

the same argument used in proving that -A was accretive, -

~ SCl
{wi wi(l~

) + 
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

dCl

~ $ {v~~~~~vj i~ + ~~m(s)a~u.(s1~ ).a .u .(s ,~ )ds} dQ

+ SCl
{n1~

aJ ~~
m(s)a

J
uL

(s
~~

)ds.
~~ k

a
h fm (s)~~

u
k

(s ,
~~

ds

+ ~~m(s)a~ [v~(~~ + f u.(s,~~1 .aj  [v .( ~~ + 
~~ 

U . (s ,~~] ds~~dCl .

Le tting ~ r = ~~~, we see th at (u ,v) E~~(A) , with ~}(u ,v )j ~~ + I1A(u ,v) ft~ � ll(w,z)II~
• Hence, for any r E (O,o~J, we have shown that (3 .5)  has a solution (v,u) E~~(A)

for every (w,z) ES , and thus we conc lude that ft(i - A) = I. The proof is comp lete .

Theorem 3.1 shows that our abs-tract -linear evolution equation (3.4) has

a unique solution for every x E ~~(A). Furthermore, as the dynamical system

is linear , this theorem implies that all positive orbits are bounded

and every motion is stable .

For r < ~ the injection (~
(A),l(.ILA

)c.II.I is compact, and it follows that

(I-A ~~
1 
is a compact operator. ‘Hence , if r < we may now conclude that

all positive orbits are precompact (see Dafermos and Slemrod (1973)), and

this fact enables us to prove the following result.

-- -
~
-
•, -

~~~~ 
- -

-- --~~~~ -~~~~~~~ -— - 



_ _ _ _ _ _ _  _ _ _ _ _  _ _ _  

-‘~~
-
~~~~~~~ ~~~ —NJ~ -- ~~~~~~~~~

15

Theorem 3.2: For rn(s) satisfying (2.3) with r < ~~~, every motion of (T(t fl �o
is asymptotically stable.

Proof: Defining V : I — as V(x )  = (x,x), and defining ‘c’ : I. ‘ R by

~(x) a u r n  inf ~ [V (T(t)x) -V(x)J , x€ I

we see that ‘~7(x) = 2(x ,Ax) for xE~~(A); therefore, our accretivity argument shows

that

?(x) = S
~
J’ n ’(s).ak

u
i
(s,’ri

~
.a
ku.(s,1t~

ds dc2 a -  W(x) � 0

for all x = (v,u) E~~(A). By Theorem 3.9 of Walker (1976), it -follows that

~(x) ~~~- W (x) ~ 0 for all x-E I.-- Hence, V is a Liapunov function on I (see flale (1969)).

Conditions (2.3) on rn(s) imply that m ’(s) < 0 for all s in some nonempty

open set t9C (O,r); consequently,

[xEII~ (x) = o)c {(v,u)EI1$ a
kui(s,

1
~

.a
k
u
~
(s,1

~
)do = 0 a.e. sE~9}

Using equation (3.4), it is not difficult to see that the largest positive

invariant subset of (x E II’~’(x) — o) is m tO). As all positive orbits

are precompact, LaSalle’s Invariance Principle (see Hale (1969)) now implies

that T(t)x - 0 as t — ~~~, for every xEI; hence, x — 0 is an asymp toticall y

stable equilibrium. By the linearity of the dynamical system, it follows that

all motions are asymptotically stable, and the proof is complete.

In two recent papers Slemrod (1976), (1978) has used similar methods to

study a problem very closely related to our formal linear problem (3.1), (3.2),

- 

~~~~~~~~~~~~~~~~~~~~~~~~~ •;
•
~~

_

- -  — -  — s _ b  -
- -

~~~~ _-~~~~~~~ -__,-~__,~~~~~ -•-- 
_
~~~~

__
~ --. —------• -- -- — _._~_• _~~._ _  -- •—- —‘--—-— - -——------- —‘--—-- - — ‘——.-.----— ----. —~~~~

—-
~~

• -----,-.- - —-— -~~~~~~ • - S. - - -~ -
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(2.14). Rather tha n us ing the pair (v,u) to represent the state of the system,
/ ~ 

.5
’Slemrod chose the pai r ~v , - ~~~~ U). He also placed additional restrictions

• on the history ‘ corresponding to (2.16) and a linearization of (2.17), name ly

u(s ,11) + 1lE~
) 

, (s ,II) ~~~ x C)

(3.9) u(s ,TI) 0 , (s,1I) ER~ X r

0 , (s ,~fl) E~%~ x C)

These conditions require the “linearized fluid” to have always occupied the

container and to have always been incompressible. Using a different space

and topology, Slemrod (1976) was then able to prove that his formal equations

led to a stable linear - dynamical system, paralleling our Theorem 3.1. He

also obtained an asymptotic stability result under the additional assumption

tha t J s m(s)ds < ~~~, which does not presume a f inite memory length r . Our
0

Theorem 3.2 assume s r < ~~~, but does not require the additional assumption (3.9).

Under further assumptions on the behavior of the material function rn(s),

Slemrod (1978) proved an exponential stability result. We will now present

a result on exponential decay , in our topology, for those initial

states in I that happen to satisf y (3.9).  To this end , let Q denote the

1I i11-comple~ ion of the set C(v,u) ES~ (3.9) holds).

Theorem 3.3: Let nt( s)  satisfy (2.3) and let there exist 
~2 

~ > 0 such that

11m (s) ‘ 
- m ’ (s) ~ ~2m(s) for all sEEO ,r)

- j Then there exist N > 0, e > 0, such tha t ~lT(t)x1l1 ~ Me ~~ 1x11 1 for all

tER~, xE~t.

-: _ _ __ __ _- - JIT~~ J T~ ~~~~~~~~ _ _

-. - ~~~~~ - s ,a~ ~~~~~~~~~~ - _,_ - - - —-
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Proof: It is not difficult to see that 
~i is positive invariant under

i.e., v(x)CQ for xEQ. Defining U: I as

r
U(x) a Ix~~ + ~ 5 v~ (T1) 5 m(s)ui (s ,TDds dC) , xE I

C) 0

where ~ > 0, we f ind that, for xE~~,

~(x) 
a lint inf ~ ~U(T(t)x) -U(x)~t•ti&O

- - v .(~)v .(~)dC)+ B r v (
~1 

0

r ’  1.r .
~~
, ,.r

+ S j  (~ I m (s) ~ U . ( s~ 11)ds) ( J m(s)~~.u . (s , TOds) dC)
c2~~~ o ‘ o

+ SSrm,(s)~jui(S, ajUi(s,~~ds dC)

where ~ ~ ni(s)ds .
0

We wish to show the existence of nwnbers c
1 

� c2 > 0, c > 0 , such that

c
1llxft~ 

� U(x) � c2I~xij 2 and ~J(x) ~ - 2cU(x) for all x E q .  We f irst  notice

that, by Schwarz’ inequality,

r 2 ~r H$ m(s)a u~ (s ,1’~)ds 
- m (s)a u~ (s~11).~ u (s ,11)ds .

o ~0 
ji

Also , for all z E ( C (C)) ) 3 it is known that

r z (T~)z (11) dC) k z (T~) .~ z (T~)dL)i l~~
C)

J i

for some k(C)) < 
~ ; hence , for (v , u) EQ,

--  — —~ - - ‘ -- -- - -
~~~~~~

- 
~~~~~~

- - - -
~~~~~~~~

-- --
~~~~~~~~~~~ 
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2 ~.r ~~~v (T~)~ m ’ (s)u (s ,Ti) ds dC) 
~ ni ’ (s) v (f l )v (11) ds dC) • I m ’ (s)u 4 (s ,fl)u4 (s ,1l,)ds dC)

~ .j
O i 

~C)~O ~ i ‘c t o  1.

‘ nt (O)k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 

r
~ m (0)k~ v (Tt) v (Tl)dU. 1’ 5 m (s)~ u (s,11) ~ u (s , 11)ds d~)2 0 i i °c2 o _ j i

where we have applied Schwarz ’ inequality. Siinilarly,for xE~~,

r 2 r
l i $ ( ) i(,I D I  � c x kSvj(1)vj(1D dC).Srm (s)~ j

u
i

(s ,T
~
).a

j
uj(s ,TDdsdC)

It then follows that

IU(x) - IIxII~ I � (5~k/2)~jxII~ ,

.
U (x) � - v

i
(Tt)vj(l’l)dC)‘-C)

+ B(k~2
m(0) )~( iv

~
(1Dv

~
(1DdC))( $ç$0

m s ) ~ juj s,i ~u1
(s ,11)ds dQ)

j m(s)~~.u.(s,TI).~ u~ (s ,fl)ds dC)iC ) Ø  3 1  j

for all xE C~. Choosing S > 0 so small that 5ak < 2 and S(k~2m(0) + ~~
2) < ~~

we see that suitable numbers c1, c2, £ do exist. As (~ is positIve invariant ,

it follows that U(T (t)x) ~ e
_2CtU(x) for all tEI (’, xE~~; hence, we find that

~T(t)xlj~ 
� (c1/c2)e

26tIIxjl~ , t E~~ , x ,

and the proof is complete. -

_ _  

_  -~~~~~ -

~~~ 
-
~~~~ 

. .

-- .~~~~ —~~~ - - . - -- - —- -.——- -
~~1

— ---~~
, 
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In this section our principal purpose was to prove that the linear abstract

evolution equation (3.4) generates a dynamical system on I. We have gone

- beyond this objective, considering stability properties and exponential decay

- 
of motions , in order to provide a basis for comparison with the related

results of Slemrod (1976) , (1978) .
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4. The Nonlinear Problem

- We now return to the nonlinear problem described by the abs trac t evolution

equation (2.19),

(4.1) *(t) = Nx(t) a.e. tE ft~

x(O) = x E I

where N is the closed, dense ly defined opera tor described in ~2. Questions

regarding existence and uniqueness of solutions of (4.1) are quite difficult

to resolve, and we are not able to prove that (4.1) is associated with a

dynamical system on I. However, assuming that it is, we shalt show in this

section tha t all pos itive orbits are bounded and the equilibrium at x = 0

is stable.

In ~3 we showed that linearization of the problem led to a dynamical

system on the Hilbert space I. This suggests that it is plausible to assume

that the nonlinear problem also is associated with a dynamical system on I,

in the following sense.

Assumption 4.1: For all sufficiently small X> 0, R(I - ?~N) = I and J~ 
E (I - XN) ’

exists; moreover , with I, there exists a dynamical system (S(t))
�o on I

- 
• such that J ~~~

,
X — S(t)x as n — ~~~ , for every x El, t E It~, the convergence being

uniform on compact subsets of

This particular association between the dynamical system CS(t))�0 and

the operator N is motivated by considering a backward-difference approximation

of equation (4.1) given by

- --- - - - — - - - —— — - - --
~~~~ -~~~~~~-~~~~~~ ~~~~~~ 

- -

iI1 ~ --‘-
~~--~ - - -~~~~

- 5—.- -rn - - - - 
s~-s’-~~~~,. 

- 
~~~~~~~~~~ -S~~~~~~~sS~~~ -s~~~ -
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x(O) x E1
0

It is seen that for sufficiently large n, depending on t , this equation has a

solution x(t) J ,x if ft(I - )~N) = I and if (I - XN) exists for all

sufficiently small X > 0. Under Assumption 4.1, is a Hille-type

approximation of S(t)x
0 
(see Yosida (1978)).

If wI-N were accretive for some wEI%, then the theory of Crandall and

Liggett (1971) would show that Assumption 4.1 holds if and only if R(I - ).N) = I

for all sufficiently small X > 0 (see Yosida (1978)). Unfortunately, wI - N

is not accretive and we are unable to prove the validity of our assumption,

even if R(I - )~N) — I,

It is remarkable that, under Assumption 4.1, it is easy to prove that

all positive orbits are bounded and the equilibrium at x = 0 is stable.

Theorem 4.2: For rn(s) satisfying conditions (2. 3), and under Assumption 4.1,

IIS (t)x111 � IjxU 1 for all tER
’
~
’, xEI. Furthermore, S(t)x - 0 as t if

the positive orbit ‘y(x) is precompact.

Proof. Defining V(x) a II x11~ and

- 
‘(7(x) urn  inf -

~~~ [V(S(t)x) -V(x)]
- t ’

~’*0

for x E I , we note t1~at for X> 0 and xE~~(N) ,

________________  -- - - - ~~~~~~~~~s -
- 

- ~~~~ ~~~~~~~~~~~~~ 
-

~~~~ -~~~~~~~~~~
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V(x - ~~x) � V(x) - 21(x,Nx) , 

-

(x ,Nx)- 
~~~~~~~j 

+
~~j

u
L(s

Tt))ds} dC)

- k i  + 
~~~~~~~~~~~~~~ 

+ ~~— u~ (s ,TD} ds d~l

= - 
~ $v

.(C)) J{vL(~
)vL(~~ 

+ S m(s)a
k
u
i

(s ,
~
).a

k
u
i

(s ,
~~ ds} 

dC)

- 

~~~~ 5
m(s uk (s , T

~~~j u~ (s~ lD + a .u~ (s ,T~Jds dC)

- $C)~k
v
j $

r
m (s) jui(s,i kui~s,i~ + 

~k
u .(s ,T

~~
ds dC)

- ~~~ $f~

’
m~s~ 

.

~~~~~ kui(5,~
) k

u
i(s,h1)~~

5 dC)

= 
1 a - -

~~ W(x) ~ 0

As £(N) is dense and Assumption 4.1 is made, Theorem 3.4 of Walker (1979)

shows tha t ‘(7(x) ~ - W(x) � 0 for all xEI; consequently, V(S(t)x) ~ V(x) for

all tEft’4 , xEI. As in the proof of Theorem 3.2, we also see that the largest

positive invariant set [~+ in bcEIt’Q (x) = 0) is = to); hence, if x is

such that ~(x) is precomp act , LaSalle ’s Invariance Principle (see Hale (1969))

implies that S(t)x -. 0 as t -. . The proof is complete.

Theorem 4.2 shows that all positive orbits are bounded and the equilibrium

at x — 0 is stable . If all positive orbits could be showit to be precompac t ,

Theorem 4.2 would imply that x — 0 is globally asymptotically stable.

Although we do not know that all positive orbits are precompact, the last result

- - - - — S  _ ‘~~~ - — -  — -  ~~~ — -  - - — -, — — —  _; _ _-.~~~~~~~~~~~~ -~~~~ — — -
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of Theorem 4.2 does show that there exist no equilibria (steady f lows)  other

than x — 0 (the rest condition), and it also shows that there are no nontrivial

per iodic motions (nons teady periodic flows).

We remark that the function V (x) ~xli~ used in the proof of the forego ing

theorem is a Liapunov function for (S(t) )
~~~0 

(see Hale (1969) and Walker (1979)).

Useful Liapunov functions often are extremely difficult to discover for a

highly nonlinear problem , and discovery of a topology suitable for a state

space may be even more difficult. In fact, these difficulties are so inter-

rela ted (see Walker (1976)) that a “formal” Liapunov function (for the formal

equation) of ten is sought a prior i, as a means of suggesting a suitable

topology for the state space. This is what led us to set equation (4.1) and

Assumption 4.1 in the particular Hu bert space I, rather than in any other

metric space .

The function V is the only Liapunov function that we have been able to

find for the nonlinear problem. This is in contrast with the linearized

problem of §2, which admits an infinite family of useful Liapunov functions,

and leads to a corresponding family of linear dynamical systems on state

spaces differing in their topologies. The linear dynamical system and

Liapunov function of Slernrod (1976) belong to this family, which can

be def ined in terms of the set of linear operators that commute with the

linear operator A of (3.3). However, among all of the functions in this

family, it appears that only the function V employed here is useful with the

-
‘ 

- 
original nonlinear problem.

- 
- Our Liapunov function V admits a simple physical interpretation. To

demonstra te this point mos t clearly, we return to the formal problem of §2 and

relax certain of our assumptions . Rather than assuming that v~~(l~1 t) 0 for

-,

~

.‘•.

~

%: 
- - 

-

a. - - - - -S — -~~~~~
_ —

-~~~ - - - 
~~~~~~~~~~~~~~~~ 

‘ —
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(1I,t) Er X R+, let us assume only that fluid can not cross the boundary F of C);

that is, vi(11,t)nj(11) = 0 for (T~,t) El” X R,+, where n(ll) denotes the unit

outward normal to F. Let us also consider a general body force field f~ (T~, t ) 1

rather than one derived front a potential q(Tj,t). If we retain all other

assumptions of §2, formal computations lead to

~~~V(x(t) $$m ’( s)
~k

uj(s ,
~~
,t).

~k
u .(s,11,t)ds dC) + 2P(t)

� 2P( t) , tER ’1’

where P(t) is the external power,

P(t) a $f~~~
,tv

~
o
~
,t dC)+ $n 1 s . . , t)v .(1~, t )dF -

Consequently, we see that .~~ V has the basic property of a “mechanical energy

function” for the fluid. When all assumptions of §2 are app lied ,

P(t) = 0 and V(x(t)) ~ 0 for all tE f~
+. 

-

The assumption of “fading memory” p layed a crucial role in our analysis;

however, we remark that conditions (2.3) can be slightly weakened. It is not

difficult to see that we do not actually need mEC
1
Q~

’) and , except for Theorem 3.3,

all of our theorems continue to hold if conditions (2.3) are replaced by

a) m : -. ~ is integrable , with 0 < 5
m (s)ds <

(4.2) b) m is nonnegative and nonincreasing on

c) rn(s) > 0  for sE [0,r) ; m(s) = 0 for s~~(0,r)

where r > 0 may be infinite.

______________ _ _ _ _ _- - -‘~~ r -- ---
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20. Abs~ raci c o n t i n r i ~-d 

- 

1
behavior results for this linearized problem are proved through the
use of Liapunov stability methods . On the assumption that the
original nonl inear  evolut ion equation also is associated with  some
~dynamical system on the same space , it is shown that the rest 

condition

1of the fluid is stable and all 
motions are bounded. The Liapunov

function employed for this purpose can be interpreted as a -

‘mechan ical energy function for the fluid.
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